3 C*-Algebras

In the same sense as Banach algebras may be seen as an abstraction of the space of bounded operators on a Banach space, we can abstract the concept of bounded operators on a Hilbert space. Of course, a Hilbert space is in particular a Banach space. So the algebras we are looking for are in particular Banach algebras. The additional structure of interest coming from Hilbert spaces is that of an *adjoint*.

Definition 3.1. Let A be an algebra over \mathbb{C} . Consider a map $^*: A \to A$ with the following properties:

- $(a+b)^* = a^* + b^*$ for all $a, b \in A$.
- $(\lambda a)^* = \overline{\lambda} a^*$ for all $\lambda \in \mathbb{C}$ and $a \in A$.
- $(ab)^* = b^*a^*$ for all $a, b \in A$.
- $(a^*)^* = a$ for all $a \in A$.

Then, * is called an (antilinear antimultiplicative) involution.

Definition 3.2. Let A be a Banach algebra with involution $*: A \to A$ such that $||a^*a|| = ||a||^2$. Then, A is called a C^* -algebra. For an element $a \in A$, the element a^* is called its adjoint. If $a^* = a$, then a is called self-adjoint. If $a^*a = aa^*$, then a is called normal.

Exercise 1. Let A be a C*-algebra. (a) Show that $||a^*|| = ||a||$ and $||aa^*|| = ||a||^2$ for all $a \in A$. (b) If $e \in A$ is a unit, show that $e^* = e$ and that ||e|| = 1. (c) If $a \in A$ is invertible, show that a^* is also invertible.

Exercise 2. Let A be a unital C*-algebra and $a \in A$. Show that $\sigma_A(a^*) = \overline{\sigma_A(a)}$.

Exercise 3. Let X be a Hilbert space. (a) Show that BL(X,X) is a unital C*-algebra. (b) Show that CP(X,X) is a C*-ideal in BL(X,X).

Exercise 4. Let A be a C*-algebra and $a \in A$. Show that there is a unique way to write a = b + ic so that a and b are self-adjoint.

<u>Exercise</u> 5. Let T be a compact topological space. Show that the Banach algebra $C(T,\mathbb{C})$ of Exercise 3 in Section 1 is a C*-algebra, where the involution is given by complex conjugation.

Proposition 3.3. Let A be a C*-algebra and $a \in A$ normal. Then, $||a^2|| = ||a||^2$ and $r_A(a) = ||a||$.

Proof. We have $||a^2||^2 = ||(a^2)^*(a^2)|| = ||(a^*a)^*(a^*a)|| = ||a^*a||^2 = (||a||^2)^2$. This implies the first statement. Also, this implies $||a^{2^k}|| = ||a||^{2^k}$ for all $k \in \mathbb{N}$ and hence $\lim_{n\to\infty} ||a^n||^{1/n} = ||a||$ if the limit exists. But by Proposition 1.12 the limit exists and is equal to $r_A(a)$.

Proposition 3.4. Let A be a C*-algebra and $a \in A$ self-adjoint. Then, $\sigma_A(a) \subset \mathbb{R}$.

Proof. Take $\alpha + i\beta \in \sigma_A(a)$, where $\alpha, \beta \in \mathbb{R}$. Thus, for any $\lambda \in \mathbb{R}$ we have $\alpha + i(\beta + \lambda) \in \sigma_A(a + i\lambda e)$. By Proposition 1.7 we have $|\alpha + i(\beta + \lambda)| \le ||a + i\lambda e||$. We deduce

$$\alpha^{2} + (\beta + \lambda)^{2} = |\alpha + i(\beta + \lambda)|^{2}$$

$$\leq ||a + i\lambda e||^{2}$$

$$= ||(a + i\lambda e)^{*}(a + i\lambda e)||$$

$$= ||(a - i\lambda e)(a + i\lambda e)||$$

$$= ||a^{2} + \lambda^{2}e||$$

$$\leq ||a^{2}|| + \lambda^{2}$$

Substracting λ^2 on both sides we are left with $\alpha^2 + \beta^2 + 2\beta\lambda \le ||a^2||$. Since this is satisfied for all $\lambda \in \mathbb{R}$ we conclude $\beta = 0$.

Lemma 3.5 (Complex Stone-Weierstrass Theorem). Let T be a compact topological space and $A \subseteq C(T,\mathbb{C})$ a subalgebra of the algebra of complex valued continuous functions over T. Assume that A separates points, contains the constant functions and is self-conjugate. Then the closure of A in $C(T,\mathbb{C})$ is equal to $C(T,\mathbb{C})$.

For a proof, see e.g., the book of Lang.

Theorem 3.6 (Gelfand-Naimark). Let A be a unital commutative C^* -algebra. Then, the Gelfand transform $A \to C(\Gamma_A, \mathbb{C})$ is an isomprhism of unital commutative C^* -algebras.

Proof. Since A is commutative all its elements are normal. Then, by Proposition 3.3, $||a^2|| = ||a||^2$ and we can apply Proposition 2.17. So, we know that the Gelfand transform is an isomorphism of unital commutative Banach algebras onto its image $\hat{A} \subseteq C(\Gamma_A, \mathbb{C})$.

We proceed to show that the Gelfand transform respects the involution. Let $a \in A$ be self-adjoint. Then, combining Proposition 2.15 with Proposition 3.4 we get $\hat{a}(\phi) = \phi(a) \in \sigma_A(a) \subset \mathbb{R}$ for all $\phi \in \Gamma_A$. So \hat{a} is real-valued, i.e., self-adjoint. In particular, $\hat{a^*} = \hat{a}^*$. Using the decomposition of Exercise 4 this follows for general elements of A. (Explain!)

It remains to show that $\hat{A} = C(\Gamma_A, \mathbb{C})$. We apply Lemma 3.5. The fact that \hat{A} separates points is true by construction, that \hat{A} contains the constant functions follows from unitality and self-conjugacy of \hat{A} is a consequence of the fact that \hat{A} is the image of a C*-algebra homomorphism. Furthermore, \hat{A} is closed as we have already seen.